Automatic number-plate recognition (ANPR) is a technology that uses optical character recognition on images to read vehicle registration plates to create vehicle location data. It can use existing closed-circuit television, road-rule enforcement cameras, or cameras specifically designed for the task. ANPR is used by police forces around the world for law enforcement purposes, including to check if a vehicle is registered or licensed. It is also used for electronic toll collection on pay-per-use roads and as a method of cataloguing the movements of traffic, for example by highways agencies.
Automatic number-plate recognition can be used to store the images captured by the cameras as well as the text from the license plate, with some configurable to store a photograph of the driver. Systems commonly use infrared lighting to allow the camera to take the picture at any time of day or night.ANPR technology must take into account plate variations from place to place.
Concerns about these systems have centered on privacy issues, such as government tracking citizens' movements, misidentification, high error rates, and increased government spending. Critics have described it as a form of mass surveillance.Components
ANPR uses optical character recognition (OCR) on images taken by cameras. When Dutch vehicle registration plates switched to a different style in 2002, one of the changes made was to the font, introducing small gaps in some letters (such as P and R) to make them more distinct and therefore more legible to such systems. Some license plate arrangements use variations in font sizes and positioning—ANPR systems must be able to cope with such differences in order to be truly effective. More complicated systems can cope with international variants, though many programs are individually tailored to each country.
The cameras used can be existing road-rule enforcement or closed-circuit television cameras, as well as mobile units, which are usually attached to vehicles. Some systems use infrared cameras to take a clearer image of the plates.
Technology
ANPR uses optical character recognition (OCR) on images taken by cameras. When Dutch vehicle registration plates switched to a different style in 2002, one of the changes made was to the font, introducing small gaps in some letters (such as P and R) to make them more distinct and therefore more legible to such systems. Some license plate arrangements use variations in font sizes and positioning—ANPR systems must be able to cope with such differences in order to be truly effective. More complicated systems can cope with international variants, though many programs are individually tailored to each country.
The cameras used can be existing road-rule enforcement or closed-circuit television cameras, as well as mobile units, which are usually attached to vehicles. Some systems use infrared cameras to take a clearer image of the plates.
Algorithms
The license plate is normalized for brightness and contrast, and then the characters are segmented to be ready for OCR.
There are seven primary algorithms that the software requires for identifying a license plate:
Plate localization – responsible for finding and isolating the plate on the picture.Plate orientation and sizing – compensates for the skew of the plate and adjusts the dimensions to the required size.
Normalization – adjusts the brightness and contrast of the image.Character segmentation – finds the individual characters on the plates.Optical character recognition.Syntactical/Geometrical analysis – check characters and positions against country-specific rules.The averaging of the recognised value over multiple fields/images to produce a more reliable or confident result. Especially since any single image may contain a reflected light flare, be partially obscured or other temporary effect.
The complexity of each of these subsections of the program determines the accuracy of the system. During the third phase (normalization), some systems use edge detection techniques to increase the picture difference between the letters and the plate backing. A median filter may also be used to reduce the visual noise on the image.
Shenzhen TigerWong Technology Co.,Ltd
Tel: +86 13717037584
E-Mail: info@sztigerwong.com
Add: 1st Floor, Building A2, Silicon Valley Power Digital Industrial Park, No. 22 Dafu Road, Guanlan Street, Longhua District,
Shenzhen,GuangDong Province,China